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ABSTRACT

The role of crude oil on carbon dioxide (CO2) corrosion has 
gained special attention in the last few years because of its 
signifi cance when predicting corrosion rates. However, the 
complexity and variability of crude oils makes it hard to model 
its effects, which can infl uence not only wettability properties 
but also the corrosiveness of the associated brine. This study 
evaluates the usefulness of artifi cial neural networks (ANN) 
to predict the corrosion inhibition offered by crude oils as a 
function of several of their properties that have been related 
in previous studies to the protectiveness of crude oils, i.e., 
nitrogen and sulfur contents, resins and asphaltenes, total 
acid number, nickel and vanadium content, etc. Results 
showed that neural networks are a powerful tool and that the 
validity of the results is closely linked to the amount of data 
available and the experience and knowledge that accompany 
the analysis.
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INTRODUCTION

Modeling the effect of crude oil in carbon dioxide (CO2) 
corrosion is not an easy task. Even though many re-
searchers have worked in the area, the complexity of 

the chemical nature of crude oil makes it diffi cult to 
generalize its behavior or to develop a mechanistic 
model. The majority of the work that has been done in 
the area is either experimental or based on fi eld data. 
Even though plenty is yet to be understood, there is 
presently a better understanding of the effect of hy-
drocarbons compared to a decade ago, and there is a 
higher awareness of the relevance of including its ef-
fect into the available prediction models.

Nowadays, most authors agree that both wettabil-
ity and changes in the brine chemistry are the major 
ways in which crude oil affects the corrosion of carbon 
steels in production environments. These two effects, 
in turn, are a consequence of the specifi c chemistry of 
the crude oil.

Even if no defi nite modeling or prediction was 
done, the discovery that both fl uid dynamics and 
interfacial properties playing a role in CO2 corrosion 
and the differentiation made among various crude oils 
with different origins played an important role in en-
hancing our knowledge base of the effect of crude oil 
in CO2 corrosion.

In 1991, Efi rd1 stressed the importance of test-
ing the effect of specifi c crude oils and including it in 
corrosion prediction and testing. He also introduced 
the defi nition of “Corrosion Rate Break” as the level 
of produced water in crude oil production where cor-
rosion is accelerated and becomes a problem. He 
found that the corrosion rate/produced water content 
curves for different crude oils commonly fall into one 
of three general types, as shown in Figure 1. This 
shows that the onset of accelerated corrosion in crude 
oil production cannot be reliably predicted by using 
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a predetermined produced water level, and it also ex-
plains how different crude oils can show very different 
wettability properties and offer different degrees of 
protection.

In 1993, Smart2 presented another important 
piece of work, relating petrophysical data and wet-
tability properties to corrosion. Based on the work 
by Anderson in 1986,3-4 Smart indicated that wet-
tability could be strongly affected by surface active 
compounds present in the crude oil. These surface 
active compounds are believed to be polar compounds 
containing oxygen, nitrogen, or sulfur, which are more 
prevalent in the heaviest fractions of crude oils such 
as resins and asphaltenes.

The polarity of the crude oil and the corrosion 
products such as iron oxide, iron carbonate, or iron 
sulfi de also are considered a major factor in wet-
tability. The polarity of a crude oil is described as a 
synergistic action of its polar and polarizable mol-
ecules, such as resins and asphaltenes and its het-
ero/atomic compounds: nitrogen, sulfur, and oxygen. 
The presence of these polar constituents could change 
wettability as related to corrosion by reducing the in-
terfacial tension between water and oil and by chang-
ing the tendency of crude oil to wet the surface.

In an attempt to model the effect of crude oil, 
in 1993, de Waard and Lotz5 developed an empirical 
factor to be used in their widely known prediction 
correlation. To their expression of corrosion rate:
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a multiplier (Foil) equal to one will be added when 
water cuts are higher than 30% and fl ow velocities 

are bigger than 1 m/s. These critical fl ow rate and 
water percentages come from the work performed by 
Wicks and Fraser6 and Lotz, et al.,7 respectively. When 
these conditions are not met it is assumed that the 
steel will be oil wetted and water will be entrained in 
the crude oil, then the multiplier will be zero, mean-
ing no corrosion rate. This multiplier was improved in 
2001 to include different modes of water entrainment, 
linking API(1) gravity to the water-in-oil emulsion sta-
bility, which, in turn, is linked to the effect of the oil 
wetting of the metal. At this point the multiplier was 
written as:8
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where W is the average water fraction of the liquid 
measured at the wellhead, Uliq is the liquid velocity in 
m/s, and α is the angle of deviation (in degrees) of the 
tubing from the vertical.

This factor, however, comes from fi tting observed 
fi eld data with corrosion rates predicted with a semi-
empirical model for CO2 corrosion,9 and it was exclu-
sively developed for very light oils. Since Equation (2) 
can be expressed in three terms, that is:
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de Waard, et al., suggest that the infl uence of light 
crude oils on corrosion rates in near-liquid full sys-
tems consists of three contributions, so they tried to 
link each of these contributions to a specifi c “mode” 
of entrainment.10 They defi ned three modes of water 
entrainment: Mode I being water in oil emulsion, and 
Modes II and III occurring when water separates from 
the crude oil phase. In Mode II conditions are such 
that the water phase can remain stationary at certain 
locations (with oil fl owing around it) while in Mode III 
water will move with the fl uid, thus wetting the steel 
intermittently.

Based on the results from Craig11 and using 10% 
water as an indicator of the emulsion breakpoint, they 
derived a relationship between the API gravity and the 
emulsion breakpoint:

 W API APIbreak = + > >– . .0 0166 0 83 50 20  (4)

Wbreak is regarded as an indication of the interfacial 
tension between the crude oil and the water: the lower 
this tension is, the higher the amount of water is, 
which can be present as an emulsion in the oil. When 
the interfacial tension between oil and water is low, 
the tension will also be lower, resulting in a better 
wetting of the steel by the oil, thereby reducing the 
rate of corrosion.

This approach links oil wetting properties with 
API gravity of the oil. However, it remains an empiri-

 (1) American Petroleum Institute (API), 1220 L St. NW, Washington, 
DC 20005.

FIGURE 1. The change in corrosion rate of steel in crude oil/produced 
water mixtures with increasing produced water showing the three 
types of behavior observed.1
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cal correlation built on limited fi eld data and does not 
consider the infl uence of crude oil properties, which 
can affect the stability of water in oil dispersions.

More recently, in 2004, a new approach was pre-
sented by Cai, et al.,12 where a criterion for forming 
stable water-in-oil dispersed fl ow was proposed as the 
mean for calculating a critical velocity for water en-
trainment in oil-water pipe fl ows. To account for the 
complexity of the hydrodynamics and to extract a 
valid criterion for water separation and entrainment, 
Cai, et al.,12 followed Brauner’s13 and Barnea’s14 pro-
posals. Two main physical properties, the maximum 
droplet size, dmax, related to breakup and coalescence, 
and critical droplet size, dcrit, related to settling and 
separation are compared to deduce this criterion. 
Since water is entrained by the fl owing oil phase in 
the form of droplets, it is essential to know the maxi-
mum droplet size, dmax, that can be sustained by the 
fl ow without further breakup. In dilute water-in-oil 
dispersion dmax evolves from a balance between the 
turbulent kinetic energy and the droplet surface energy.

Droplets larger than a critical droplet size, dcrit, 
separate out from the two-phase fl ow dispersion, 
either due to gravity forces predominant in horizontal 
fl ow, or due to deformation and “creaming” typical for 
vertical fl ow. A critical droplet diameter, dcb, above 
which the separation of droplets due to gravity takes 
place can be found via a balance of gravity and turbu-
lent forces.15

The fi nal criterion for entrainment emerges. The 
transition from stratifi ed fl ow to stable water-in-oil 
dispersion takes places when the oil phase turbulence 
is intense enough to maintain the water phase broken 
up into droplets not larger than dmax, which has to be 
smaller than the a critical droplet size dcrit, causing 
droplet separation. The transition criterion is then:13 

 d dcritmax ≤  (5)

In this model oil density was found to affect the 
critical velocity signifi cantly, while surface tension 
and viscosity had smaller effects. The critical velocity 
increases water cuts.

The models described above primarily address 
the water wetting (entrainment and separation) issue. 
The question remains, however, about what it is that 
makes various crude oils affect corrosion differently 
even when tested at the same hydrodynamic condi-
tions. Indeed, there must be something going beyond 
the entrainment/separation issue.

In a previous work presented by Hernández, et 
al., in 2002,16 an insight was given into the variables 
in crude oil composition that could be playing a major 
role in the corrosion inhibition offered by crude oils. 
In that work, a statistical analysis was performed 
with several Venezuelan crude oils evaluated experi-
mentally under the same conditions. Crude oils were 
separated in two groups: paraffi nic and asphaltenic, 

depending on their distribution of saturates, aromat-
ics, resins, and asphaltenes (SARA), and the effect of 
basic chemical and physical properties of crude oils 
were evaluated using multiple linear regression analy-
ses. The variables evaluated included:

—SARA analysis
—API density
—total nitrogen
—sulfur content
—total acid number (TAN)
—concentrations of vanadium and nickel
—% crude oil
The type of crude oil, either asphaltenic or paraf-

fi nic, and its concentration were found to be signifi -
cant parameters when evaluating crude-inhibiting 
effects. For asphaltenic crude oils, having more than 
3% of asphaltenes in their composition, the param-
eters infl uencing the most at low crude oil concentra-
tions were the sum of resins + asphaltenes, and sulfur 
content. At high concentrations, the effect of sulfur 
content was not signifi cant and the sum of resins and 
asphaltenes dominates the inhibiting process.

In this case, the inhibiting capacity, defi ned as 
the ratio between corrosion rates with and without 
crude oil present, was described by the following 
equation:

 

Inhibiting Capacity (asphaltenic) =
+0 48 0 00. . 44 0 0048%crude oil resin +

%asphalten
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For those crude oils considered as paraffi nic, the vari-
ables with the highest infl uence were total nitrogen 
content, resins, and asphaltenes. At low crude oil 
concentrations, nitrogen was found to be the most 
signifi cant parameter, indicating that the inhibition 
process can be related to the adsorption of nitrogen-
based compounds at low concentrations. At higher oil 
concentrations, nitrogen content becomes less signifi -
cant and the inhibiting capacity could be related to 
the formation of stable emulsions, as a result of the 
presence of polar functional groups found in the resin 
fraction.

The inhibiting capacity of paraffi nic crude oils 
was described by:
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The results from this model are plotted in Figure 2. 
The correlation coeffi cient (R-square) values, however, 
were of the order of 50%, which suggested that the 
relationship between the predictor and the response 
was not really linear and that more sophisticated 
analysis tools should be used. This led to the use of 
an artifi cial neural network (ANN) to analyze the com-
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plex nature of crude oils and its relationship to the 
inhibition.

Neural Networks as a Modeling Tool
to Predict Corrosion

An ANN is an intelligent, data-driven modeling 
tool that is able to capture and represent complex 
and nonlinear input/output relationships. ANN are 
massively parallel, distributed processing systems 
that can continuously improve their performance via 
dynamic learning. ANN are used in many important 
applications, such as function approximation, pattern 
recognition and classifi cation, memory recall, predic-
tion, optimization, and noise-fi ltering. ANN are suited 
for applications involving complex systems. They are 
used in many commercial products such as modems, 
image-processing and recognition systems, speech 
recognition software, data mining, knowledge acquisi-
tion systems, and medical instrumentation, etc.17-20 A 
key advantage of the ANN is its ability to learn, recog-
nize, generalize, classify, and interpret incomplete and 
noisy inputs (data). The ANN can acquire informa-
tion/knowledge about a given process through data in 
the training phase. This information is then stored in 
numerical form within the weights. ANN have proven 
to be powerful tools for data exploration with the ca-
pability to discover previously unknown dependencies 
and relationships in data sets. In cases where the 
input-output relations are mathematically complex, 
training data is noisy and the attributes are valuable, 
neural network approaches have been reported to per-
form favorably as opposed to other approaches.21-22

ANN have been one of the most promising ap-
proaches to the corrosion modeling process. In recent 
years the fi eld of artifi cial intelligence has been ex-
plored for modeling the corrosion process. An early 

published application of a neural network to a corro-
sion problem was that of Smets and Bogaerts.23 They 
developed a series of neural networks to predict the 
stress corrosion cracking (SCC) of Type 304 (UNS 
S30400)(2) stainless steel in near-neutral solutions as 
a function of chloride content, oxygen content, and 
temperature. They found that the neural network 
approach out-performed traditional regression tech-
niques. Ben-Hain and Macdonald24 described the use 
of neural network models to predict the infl uence of 
various parameters on the acidity of simulated geolog-
ical brines. The network inputs were the Na+ and Mg2+ 
concentration and the temperature. The predicted 
output was the pH value. The data set consisted of 
101 points, of which 90 were used for training, with 
the remaining 11 retained as a test set.

Silverman and Rosen25 combined artifi cial neural 
networks with an expert system to predict the type of 
corrosion from a polarization curve. Inputs to the net-
works included the passive current density, the pit-
ting potential, and the repassivation potential, while 
outputs were the risks of crevice, pitting, and general 
corrosion. Two approaches were used: independent 
networks for each type of corrosion and a single com-
bined network producing all three outputs. Trasatti 
and Mazza26 developed a neural network for the pre-
diction of the crevice corrosion behavior of stainless 
steels. The network was trained from long-term labo-
ratory and fi eld tests. Seventeen input variables were 
used with one hidden layer of fi ve nodes.

Palakal, et al.,27 developed an intelligent computa-
tional approach based on wavelet analysis and ANN to 
identify and quantify the corrosion damage images on 
panels obtained from nondestructive inspection (NDI) 
techniques. A K-mean classifi cation algorithm was 
used to identify the corroded regions from the non-
corroded regions in the panel based on the extracted 
features. Good accuracy was obtained in identifi ca-
tion of the corroded segments. A back propagation 
neural network was used to predict the material loss 
due to corrosion. A good trend was observed between 
the predicted material loss and the experimental data. 
Pidaparti, et al.,28 presented a study where the resid-
ual strength of the aging aircraft panels in the pres-
ence of corrosion and fatigue damage was examined. 
Both the residual strength and the corrosion rates 
were predicted using a neural network consisting of 
two hidden layer feed-forward architecture. Sensitiv-
ity analysis was performed for determining the impact 
of input variables on the output. The results obtained 
were in good agreement with the experimental data. 
A similar work was done by Bailey, et al.29 They de-
veloped a model using neural networks to predict the 
ASTM G 3430 metal corrosion rating and the resulting 
material loss in aging aircrafts. 

Bucolo, et al.,31 modeled the corrosion phenom-
ena occurring in the pulp and paper plant with a Mul-
tilayer Perceptron (MLP). In this study two predictive 

 (2) UNS numbers are listed in Metals and Alloys in the Unifi ed Num-
bering System, published by the Society of Automotive Engineers 
(SAE International) and cosponsored by ASTM International.

FIGURE 2. Variation of the inhibiting capacity with crude oil content 
for asphaltenic and paraffi nic crude oils.15
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models were constructed. Predictive models for both 
a local and a global prediction were built to allow the 
evaluation of the corrosion rate taking place in the 
stainless steel used in the ozone-bleaching devices 
used in the plant. Leifer and Mickalonis32 presented 
a model based on the pitting corrosion for the car-
bon steel waste tanks containing aqueous radioactive 
waste, used for temporary storage of spent nuclear 
fuel while permanent storage facilities for such ma-
terials were being prepared. The ANN was used to 
predict the corrosion rate. Relatively good agreement 
was obtained between the number of pits obtained 
using the ANN and the number of pits experimen-
tally measured. In one of their other works, Leifer, 
et al.,33 presented a predictive model for determining 
pitting corrosion vs. inhibitor concentrations and tem-
perature for radioactive sludge in carbon steel waste 
tanks. In this work the levels of nitrite concentrations 
necessary to inhibit pitting at various temperatures 
were experimentally determined via electrochemical 
polarization and coupon immersion corrosion tests. 
The ANN results showed a higher accuracy in predict-
ing the conditions at which pitting occurred as com-
pared to the logistic regression models developed.

Haque and Sudhakar34 developed a model for 
the prediction of corrosion-fatigue crack growth rate 
in dual-phase (DP) steels (primarily a low-carbon 
steel with micro-alloying additions of vanadium and 
boron) using an ANN. The training data consisted 
of corrosion-fatigue crack growth rates at varying 
stress intensity ranges for martensite contents be-
tween 32% and 76%. The ANN model used consisted 
of three hidden layers with back-propagation archi-
tecture. The model exhibited excellent comparison 
with the experimental results. Nes̆ić and Vrhovac35 
developed a hybrid model combining the reliability of 
a mechanistic model with the fl exibility of the neural 
network approach. The model was developed using 
the experimental database of Dugstad, et al.36 The 
model architecture consisted of a single hidden layer 
back-propagation neural network having 66 input 
neurons and 51 hidden neurons. Genetic algorithms 
(GAs) were used for the network training. The inputs 
to the network were indirect, crude, or noisy param-
eters, called primitive descriptors, such as: t, pH, 
PCO2, Fe++, HCO3–, and v (fl ow velocity of oils). Rela-
tions between these primitive descriptors were studied 
by introducing additional problem descriptors called 
evolved descriptors. The prediction ability was found 
to be signifi cantly better than conventional models.

The ANN is composed of several layers of process-
ing elements or nodes. The processing elements (PE), 
which contain the transfer function, are linked by 
connections, with each connection having an associ-
ated weight, Wi. The weight of a connection expresses 
the relative strength of the input data or transfer data 
from layer to layer and output. The ANN can appear 
in many confi gurations called architectures. These 

architectures can have many different transfer func-
tions, a different number of input PE, output PE, hid-
den PE, and hidden layers. Figure 3 shows a simple 
PE having n weights, {w1, w2... wn}, and Figure 4 illus-
trates a typical ANN with fi ve inputs, one hidden layer 
with fi ve processing elements, and one output node.

Neural networks have two distinct phases of oper-
ation: training and testing. Typically, a number of key 
design parameters need to be chosen before training 
the network, such as: system architecture (topology), 
training algorithm, and number of training cycles 
(epochs).

During the learning phase, the network learns 
by adjusting the weights to correctly predict or clas-
sify the output target of a given set of input samples. 
With supervised learning, the network is able to learn 
from the input and the error (the difference between 
the output and the desired response). One distin-
guishing characteristic of an ANN is its adaptability, 
which requires a unique information fl ow design de-
picted in Figure 5. The performance feedback loop 
utilizes a cost function to provide a measure of devia-
tion between the calculated output and the desired 

FIGURE 3. A typical PE in an ANN showing multiple inputs, one 
output node.26

FIGURE 4. A typical ANN with fi ve inputs, one hidden layer with fi ve 
PE, and one output node.
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output. This performance feedback is utilized directly 
to adapt the parameters, weights, and biases, so 
that the system output improves with respect to the 
desired goal.

Once a network is trained, it is ready for the 
testing phase. The task of the network in the testing 
phase is to produce an output, given an input, based 
on the model or hypothesis learned during training. It 
is important to note that unlike in the training phase, 
the network parameters remain unchanged during the 
testing phase.

METHODOLOGY

Corrosion Data
The detailed description of the corrosion tests 

and results used to train the neural networks were 
published in a previous paper.16 Only a summary is 
presented below to give the reader a fl avor of the pro-
cedure. Fifteen Venezuelan crude oils were evaluated 
(Table 1). An analysis of saturated components, aro-
matics, resins, and asphaltenes (SARA) was performed 
for each crude oil. API density (°API), total nitrogen 
content (NTOTAL), total acid number (TAN), sulfur con-
tent (S%), vanadium (V), and nickel (Ni) were mea-
sured according to ASTM standards.

Weight-loss corrosion tests were performed on 
coupons exposed in autoclaves, with several crude 
oil-saline solution (3.5% sodium chloride [NaCl]) mix-
tures, simulating average conditions of well heads 
(72 psi CO2 and 80°C). Water cuts were higher than 
20% in all cases, and total volume inside the auto-
clave was always kept at 1.5 L. The test sequence was 
20, 50, 80, and 99% of water (v/v), except in the cases 
of very heavy crude oils (Cerro Negro, Boscán y Zuata) 
that could only be tested at 80% and 99% water. A 
rotating speed of 500 rpm was kept to get a homoge-
neous mixture of crude oil and saline solution.

P-110 and L-80 were the steels selected for this 
study. Their compositions are listed on Table 2, but 
no signifi cant differences were found between the two 
types of steel, and only P-110 results are shown in 
this paper. Three coupons were used for each set of 
testing conditions; two of them were used for corro-
sion rate calculations and the third for surface analy-
sis and corrosion product characterization. Coupons 
were ground using a 600-grit silicon carbide (SiC) 
sand paper, then cleaned with acetone (CH3COCH3) 
distilled water, and dried. Their dimensions were 
taken and their weight was determined using an ana-
lytical balance.

The coupons were accommodated in the auto-
clave using the polytetrafl uoroethylene (PTFE) holder. 
The solution was poured and the autoclave was then 
closed and introduced in the heater assembly. The au-
toclave was purged with CO2 for 30 min to remove the 
air that could be inside. After deaeration, the equip-
ment was pressurized until a pressure of 72 psi CO2 
was reached and maintained, and then the tempera-
ture was raised to 80°C in a 1-h time period. Once the 
conditions were found, the test was performed with a 
total time of 120 h. Descaling of the coupons for the 
calculation of corrosion rates was made according to 
the standard ASTM G 1-90.37   

After calculating corrosion rates, these were 
translated into inhibiting capacity by dividing the val-
ues of each test by the value obtained in blank unin-
hibited tests, so that:

 
Inhibiting Capacity

corrosion ratewith cr= 1 – uude

blankcorrosion rate  
(8)

Neural Network Development
The methodology consists of the statistical analy-

sis of the data and development of the neural network 
model, and can be categorized into the following steps:

1. Preliminary analysis of the data.
2. Statistical analysis using commercially avail-

able statistical software.
3. Neural network model construction.
4. Network optimization using genetic algorithm.
5. Multiple tests runs on the selected model.
6. Sensitivity analysis to fi nd how input variables 

(chemical constituents) affect the output (per-
centage inhibition) and their correlation with 
the other variables.

Step 1: Preliminary Analysis of the Data
In the preliminary analysis, various graphs and 

scatter plots of the data were examined to determine 
obvious patterns that might exist within the data. The 
data set included 122 records with the following mini-
mum, maximum, and average characteristics for each 
variable (Table 3).

In this case no distinction was made between 
paraffi nic and asphaltenic crude oils, as in previ-

FIGURE 5. Information fl ow for training phase. Adapted from 
Principe, et al.26
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ous work, in the hope that the ANN would generate a 
model that could be used for all types of crude oils.

Step 2: Statistical Analysis of the Data
Multiple regression analysis was performed to 

determine a regression equation that would be able to 
explain how the model could be augmented by know-
ing any possible linear relationships among each of 
the input variables and the output. The regression 
equation is:

%Inhibition API= + + +71 7 0 023 0 000086

0 0

. . .

.

total

5576 0 722 0 714

0 700

TAN − . – . –

.

Saturates Aromatics

RResins Asphaltenes– . . –

.

0 727 0 000227

0 0047

+ V

Ni ++ 0 00365. %Crude oil  

(9)

Details for the multiple regression is given in 
Table 4. The Coef is the regression coeffi cient for a 

given variable, and SE Coef is the standard error of 
the coeffi cient. The t-value (T) is used to compare the 
t-value to the t-distribution to determine if a predic-
tor is signifi cant. The bigger the absolute value of the 
t-value, the more likely the predictor is signifi cant. 
The p-value (P) is the probability value and it is often 
used in hypothesis tests to help decide whether to 
reject or fail to reject a null hypothesis. The p-value 
is the probability of obtaining a test statistic that is at 
least as extreme as the actual calculated value, if the 
null hypothesis is true. The smaller the p-value, the 
smaller the probability is that one would be making a 
mistake by rejecting the null hypothesis. A commonly 
used cut-off value for the p-value is 0.05. For exam-
ple, if the calculated p-value of a test statistic is less 
than 0.05, the null hypothesis is rejected.

The p-values for the estimated coeffi cients of API, 
TAN, and crude oil are 0.000, indicating that they are 
signifi cantly related to % inhibition. The p-values for 

TABLE 1
Characteristics of the Crude Oils Evaluated

        Santa
  PIC4-99 PIC4-98 SBC52 VLA83 SBC36 Bárbara FUL-16 Boscán

 Saturated (%) 75.4 53.8 62.2 60.6 64.6 60.5 43.2 12.4
 Aromatics (%) 21.9 41 34.8 29.5 32.2 34.1 32.6 46.1
 Resins (%) 2.7 5.2 3 9 3.2 5.4 17.6 29.9
 Asphaltenes (%) ND(A) ND ND 0.9 ND ND 6.6 11.6
 Sulfur (%p/p) 0.58 0.67 0.566 0.98 0.57 0.585 1.1 4.4
 V (ppm) <10 — <10 130  — 5 125 1,059
 Ni  (ppm) <10 — <10 10 — 5 25 90
 V/Ni — — — 13 — 1 5 12
 Total nitrogen (ppm) 819 — 34 990 628 860 3,276 6,603
 TAN (KOH/g) 0.059 0.0843 0.24 0.046 0.023 0.02 0.11 1.02
 °API at 60°F 35.8 31.9 42.9 33.8 30 36.2 20.7 10
 Kerogen type II (marine) II (marine) II (marine) II (marine) II (marine) II (marine) II (marine) II (marine)
 Maturity Very mature Very mature Very mature Mature Very mature Very mature Very mature Very mature

  Bachaquero Menemota Lagomedio Pacón-Mara Zuata Cerro Negro Ful29

 Saturated (%) 21.1 30 47.4 41.7 13.3 13.3 41.7
 Aromatics (%) 50.1 45.1 39.9 41.3 47.8 50.9 36.8
 Resins (%) 19.7 16.4 10.9 11.5 28.8 23.3 18.6
 Asphaltenes (%) 9.2 8.6 1.9 5.4 10.1 12.4 3
 Sulfur (%p/p) 2.6 2.42 1.45 2.54 3.7 4.1 0.5
 V (ppm) 409 362 232 336 458 474 48
 Ni  (ppm) 44 44 30 28 95 102 <10
 V/Ni 9 8 8 12 5 5 —
 Total nitrogen (ppm) 4,340 3,450 1,693 2,334 6,948 6,424 1,910
 TAN (KOH/g) 4.78 0.74 0.14 0.40 3.35 3.67 0.49
 °API at 60°F 11 20.4 30.9 27.5 8.5 8.1 15.3
 Kerogen type II (marine) II (marine) II (marine) II (marine) II (marine) II (marine) II(marine)
 Maturity Very mature Very mature Very mature Very mature Not mature Not mature Very mature

(A) ND (not detected).

TABLE 2
Chemical Composition of Carbon Steels Used (%w/w)

  C Mn Cr Ni Si Cu S P

 API L80 0.30 1.20 — 0.25 0.45 0.35 0.030 0.030
 API P110 0.32 1.24 0.5 — 0.22 — 0.010 —
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V, Ni, Total, S% are >0.05, indicating that these are 
not related to inhibition at a level of 0.05.

The R-square value obtained was 55%, which is 
fairly low, suggesting that the relationship between 
the predictor and response variables is not linear. 
The R-square value of 55% implies that only 55% of 
the variability in the output could be captured and 
explained by this linear model. In addition, to see if 
the model could be improved to better explain the 
relationship, the model was modifi ed to use power 
transformations, which are transformations that 
when applied to a data set can often yield a data set 
that follows approximately a normal distribution. 
The BOX-COX and BOX-TIDWELL transformations38 
were performed on the original regression model. 
The results did not improve, reinforcing the fact that 
the relationship between the predictor and response 
variables is not linear. Finally, stepwise regression 
was performed to consider reducing the model size 
by eliminating some of the input variables (within the 
scope of the analysis). Once again, there was no sig-
nifi cant improvement in the R-square value.

Step 3: Neural Network Model Construction
A number of different architectures, such as mul-

tilayer perceptron, generalized feed forward network, 

modular neural network, and radial basis function, 
were considered for the ANN model.39 The type of 
ANN architecture used for the analysis of corrosion 
inhibition for crude oil is the multilayer perceptron 
(MLP), so only this one will be described here. MLP 
are layered feed-forward networks typically trained 
with back-propagation (learning algorithm). MLP have 
been proven to be universal approximators, capable 
of implementing any given function through the use 
of various nonlinear transfer functions.40 One of the 
most commonly used functions is the hyperbolic 
tangent function. The hyperbolic tangent function 
compresses a unit’s net input into an activation value 
in the range [–1, 1]. A number of variations were con-
sidered and tested by varying the quantity of hidden 
layers and PE.

The data set was randomized and divided into 
training (80 records), cross validation (18 records), 
and test (24 records) sets.

Step 4: Network Optimization 
Using Genetic Algorithm

Once the MLP structure was chosen as the best 
model, the next step was to optimize the network ar-
chitecture to select the best number of PE. Using the 
genetic algorithm module, the MLP with two hidden 

TABLE 4
Results of Multiple Regression

 Predictor Coef SE Coef T P

 Constant 71.72000 34.64000  2.07 0.041
 API 0.02311 0.00546  4.24 0.000
 S(%) –0.06953 0.09460 –0.73 0.464
 Total 0.00009 0.00006  1.35 0.181
 TAN 0.05759 0.01581  3.64 0.000
 Saturates –0.72230 0.34640 –2.09 0.039
 Aromatics –0.71360 0.34500 –2.07 0.041
 Resins –0.70000 0.34460 –2.03 0.045
 Asphaltenes –0.72730 0.33860 –2.15 0.034
 V 0.00023 0.00022 1.04 0.299
 Ni –0.00472 0.00341 –1.38 0.169
 %Crude oil 0.00365 0.0040  9.05 0.00

TABLE 3
Data Characteristics

   Variable Minimum Maximum Average

 API density 8.1 36.2 24.87
 Sulfur content 0.5 4.4 1.63
 Total nitrogen 628 6,948 2,471.3
 Total acid number 0.02 4.78 0.913
 Total saturates 12.4 75.4 44.52
 Aromatics 21.9 50.9 38.65
 Resins 2.7 29.9 12.59
 Aphaltenes 0 12.4 4.26
 Vanadium 5 1,059 216.5
 Nickel 5 102 28.5
 %Crude oil 1 80 33.6
 %Inhibition 0.153 0.999 0.8297



CORROSION SCIENCE SECTION

CORROSION—Vol. 62, No. 6 475

layers (6 PE each) was shown to model the crude oil 
behavior, resulting in the best accuracy for predicting 
the inhibition rate (Figure 6).

Step 5: Multiple Tests Run on the Selected Model
After network optimization, a number of runs on 

the selected ANN were performed by randomizing the 
data, to ensure that the network was able to under-
stand, interpret, and learn from the data. From those 
runs, six models (neural network Tests 1 through 6) 
were chosen as the best models generated. The test 
results of the six ANN models are shown in Table 5.

Step 6: Sensitivity Analysis
Sensitivity analysis is a method for extracting 

the cause and effect relationship between the inputs 
and outputs of the network. The network learning is 
disabled during this operation such that the network 
weights are not affected. The basic idea is that the 
inputs to the network are shifted slightly and the cor-
responding change in the output is reported either as 
a percentage or a raw difference. The activation con-
trol component generates the input data for the sen-
sitivity analysis by temporarily increasing the input 
by a small value (dither). The corresponding change 
in output is the sensitivity data. Each input chan-
nel to the network was varied between its mean ±1 
standard deviation, while all other inputs were fi xed 
at their respective mean values. Sensitivity analysis 
was performed for the chosen MLP network and for all 
the test runs for that particular model. The sensitivity 
was computed based on the corresponding difference 
(delta) in the output(s) as graphed using the Max-Min 
criteria of the output (inhibition). A cumulative sen-
sitivity graph was constructed by averaging the sen-
sitivity values for all the selected neural network test 
runs (Test 1 through 6).

In addition, the data was subdivided on the basis 
of the crude oil percentages for further analysis. The 
data was separated by crude oil percentage into four 
different groups: 1%, 20%, 50%, and 80%. A sensi-
tivity analysis was also performed on these groups. 
Based on the results, similar behavior patterns were 
noted between the 1% and 20% crude oil data and 
similarly between the 50% and 80% crude oil data 
analyses. The similar groups were combined (1% and 
20%) and (50% and 80%), and another sensitivity 
analysis was performed to see if there were similari-
ties between low or high crude oil concentrations.

RESULTS AND DISCUSSION

As described in the previous section, several neu-
ral network tests were performed and the sensitivity 
about the mean for each case was calculated. Figures 
7 through 9 show examples of the results (neural 
network Test 6). For this particular example the R 
value was 0.967, and as can be seen from Figure 7 
the prediction of the neural net is really accurate. 
From the sensitivity graph (Figure 8) it can be inferred 
that the variables having the greatest infl uence in the 
response were crude oil percentage (%crude oil), Ni 
content, API gravity, and total nitrogen, in that order. 
It is important to stress that the results shown here 
are representative of the data from these experiments, 
related to a sample of Venezuelan crude oils only. The 
results are not intended to be taken as universal until 
the model is completely developed and additional data 
are used to calibrate it.

Figures 9 through 19 show the separate sensitiv-
ity for each variable. According to this neural network 
test an increase in %crude oil will cause an increase 
in the inhibiting capacity (Figure 9). Nickel content 
seems to diminish the inhibiting capacity (Figure 10). 
API (Figure 11) and total nitrogen (Figure 12) seem 
to improve corrosion inhibition. Nickel in crude oils 
can be seen as a measure of the metal/porphyrin 
complex compounds containing either nickel or vana-

TABLE 5
Test Results of ANN Models

     Model 1 2 3 4 5 6

 Mean squared error (MSE) 0.0026 0.0031 0.0023 0.0015 0.0042 0.0035
 Mean absolute error (MAE) 0.0344 0.0422 0.0347 0.0266 0.0377 0.0403
 r2 0.976  0.955  0.979  0.916  0.948  0.967  

FIGURE 6. MLP architecture for crude oil inhibition.
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phaltenes (Figure 19), which showed an increase in 
inhibition as their content increased.

Figure 20 shows the results of the neural net-
works in comparison with the data for the cumula-
tive analysis from six test runs. The application of 
neural networks allows the user to construct the 
graph of crude oil vs. inhibition if all the parameters 
are known. As most crude oil properties are interre-
lated and, in turn, dependent on the origin where the 
crude oil comes from, it is important to know all the 
variables. The cumulative sensitivity, as shown in Fig-
ure 21, is the result of combining six tests and their 
individual sensitivities. The parameters showing the 

FIGURE 8. Sensitivity about the mean for Test 6.

FIGURE 7. Actual vs. predicted inhibition for neural network Test 6.

FIGURE 9. Separate sensitivity for % crude oil.

dium, and there has been evidence indicating that 
these compounds are surface active and could help 
increase the tendency of the crude oil to wet the sur-
face of the metal. However, in practical application, 
vanadium and nickel are usually measured because 
these materials have serious deleterious effects on 
catalyst performance during refi ning by catalytic 
processes.

The effect of vanadium (Figure 13) and total acid 
number (Figure 14) resulted in an increase in the in-
hibiting capacity; however, the effect is very small as 
can be seen for the values in the y axis. The increased 
content of %S in the range tested (Figure 15) showed 
a decrease in the inhibiting capacity.

In regard to the SARA components of the crude 
oil, none showed a signifi cant effect; however, satu-
rates (Figure 16) were shown to decrease the inhibit-
ing capacity as their content increased, contrary to 
aromatics (Figure 17), resins (Figure 18), and as-

FIGURE 10.  Separate sensitivity for nickel, Test 6.

FIGURE 11. Separate sensitivity for API, Test 6.
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FIGURE 12. Separate sensitivity for total nitrogen, Test 6. FIGURE 13. Separate sensitivity for vanadium, Test 6.

FIGURE 14. Separate sensitivity for %S, Test 6. FIGURE 15. Separate sensitivity for TAN, Test 6.

FIGURE 16. Separate sensitivity for saturates, Test 6. FIGURE 17. Separate sensitivity for aromatics, Test 6.

FIGURE 18. Separate sensitivity for resins, Test 6. FIGURE 19. Separate sensitivity for asphaltenes, Test 6.
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highest infl uence were %crude oil, nickel content, API 
degree, and TAN, in that order.

The tendency of %crude oil vs. inhibition was 
clear in both the data and the model. An increase in 
crude oil content increases the degree of corrosion 
protectiveness by the crude oil. With API density, 
even if the data is scattered, the model predicts an 
increase in inhibition as API increases, implying 
lighter crude oils providing higher values of inhibiting 
capacities. Regarding the nickel content, the effect 
was persistent through all the analysis, while it was 
not obvious in the data. In the ranges tested, of the 
5-ppm to 110-ppm nickel, an increase in nickel con-
tent decreases the ability of the crude oil to provide 
inhibition. This effect is contradictory to what would 
be expected if one thinks of nickel as related to metal-

lic complexes that could help change interfacial prop-
erties between water and crude oil, thus helping water 
to get entrained and increasing crude oil wettability.

To see if this effect was repeatable, separated sen-
sitivity analyses were performed for the various crude 
oil contents evaluated: 1, 20, 50, and 80%.

—For 1% crude oil (Figure 22) the model tends 
to predict a higher inhibiting capacity than the 
real measured values, but the R value is still 
considerably high, 0.963. Nickel appears to be 
most signifi cant, followed by API, sulfur con-
tent, TAN, and asphaltenes. All increase the 
inhibiting capacity when increased in number 
or concentration, except Ni.

—For 20% crude oil (Figure 23, R = 0.998) nickel 
is not that critical and the most infl uential vari-
ables are API, total nitrogen, resins, and TAN. 
Saturates seem to have a detrimental effect.

—For 50% crude oil (Figure 24, R = 0.960) the 
four variables with the highest sensitivity are 
nickel, vanadium, aromatics, and sulfur. Nickel 
and aromatics decrease the value of inhibiting 
capacity as their content increases. If only 
positive effects are considered, then V, %S, 
asphaltenes, and resins show the highest 
infl uence.

—For 80% (Figure 25, R = 0.990) nickel and 
vanadium showed the highest sensitivities, in 
both cases producing a decrease in the inhib-
iting capacity as their content increases. As-
phaltenes follow and then aromatics, the latter 
also having an inverse relationship. Note that 
sensitivity values are a lot higher for the fi rst 
two cases.

An interesting result from the model is that it 
pointed out notably different behaviors when the 
crude oil concentration changed. By putting together 
the data for low concentrations (1% and 20%, Figure 

FIGURE 20. Neural network model results vs. actual data.

FIGURE 21. Cumulative sensitivity graph.
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26) and the data for higher concentrations (50% and 
80%, Figure 27), and looking at the sensitivities, it 
can be concluded that at higher concentrations the 
presence of crude oil per se (coverage) has the great-
est infl uence and the effects of different variables are 
not as relevant. At low crude oil concentrations the 
sensitivities are a lot higher (up to 0.8), indicating 
that inhibition is not as much related to the amount 
of crude oil but to the presence of oil or a combination 
of the two.

According to the model, for most cases, nickel 
content seems to have a great effect in decreasing the 
% inhibition provided by crude oil. From the scientifi c 
point of view, no explanation can be offered regard-
ing the effect of nickel unless more experimentation is 
performed.

If we now return to the multiple regression analy-
sis, it was seen that most of the input variables are 
highly correlated, which is actually expected based on 
knowledge about crude oil chemistry. The following 
relationships were found by analyzing the data on this 
paper (graphs are not shown for space limitations):

—Increased amounts of the aromatic compound 
result in an increase in density (API density), 
whereas an increase in saturated compounds 
results in a decrease in API density.

—Lower API crude oils tend to have higher sulfur 
contents (%S), asphalt content (asphaltenes 
and resins), and are associated with higher 
nitrogen contents.

—As % sulfur increases so does nickel, and both 
nickel and vanadium tend to decrease as API 
increases.

These highly correlated variables made it hard 
for the neural network to pick up sensitivities; how-
ever, by combining the multiple regression results 
with the neural network results it can be inferred 
that at low oil concentrations API could be used as 
the leading variable in the inhibition process. On the 
other hand, all variables evaluated will be affecting 
inhibition to some degree, so all of them would have 
to be measured and further analysis will have to be 
performed to see if these covariations can be system-
atically predicted.

FIGURE 22. Sensitivity about the mean for 1% crude oil 
concentration.

FIGURE 23. Sensitivity about the mean for 20% crude oil 
concentration.

FIGURE 24. Sensitivity about the mean for 50% crude oil 
concentration.

FIGURE 25. Sensitivity about the mean for 80% crude oil 
concentration.
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To illustrate this point, Figure 28 shows an ex-
ample of the response of the neural network when all 
input variables are known, while Figure 29 shows an 
example of a crude oil where only four variables were 
known (resins, asphaltenes, nickel content, and sul-
fur) and the rest were deduced from rough approxima-
tions using the relationships found from the multiple 
regression analysis. When all variables are known, 
the response is more accurate, as expected. However, 
the response in the second case is not bad, indicating 
that by doing a profound analysis of these relation-
ships the model could be improved and the number 
of inputs could be reduced.

CONCLUSIONS

❖ Based on experimental data from Venezuelan crude 
oils an effective neural network model was developed 
that can predict the ability of a crude oil to provide 
corrosion protectiveness in a CO2 environment.
❖ Provided that the model is fed with enough data 
from crude oils with different origins, the model would 
have the capability of creating the curve of %crude 

oil vs. corrosion rate for a given crude oil by knowing 
some of its physical and chemical properties, most of 
them routinely measured.
❖ Sensitivity analyses were performed to extract the 
variables having the highest effect on the response. 
Most of the trends noticed in the experimental data 
were captured by the network. However, the indicated 
correlations between the variables could not always 
be explained and could lead to dubious interpreta-
tions. More research is needed to expand both the 
experimental database and the modeling capability, 
with a goal to generate the knowledge necessary to 
determine the factors governing the effect of crude oil 
in CO2 corrosion.

FUTURE WORK WITH ANN

ANN act like “black boxes” in the sense that re-
lationships are encoded incomprehensibly as weight 
vectors within the trained network. Although ANN 
have proven to be empirically successful, they are 
generally treated as numerical enigmas, often gen-

FIGURE 27. Sensitivity about the mean for 50% and 80% 
combined.FIGURE 26. Sensitivity about the mean for 1% and 20% combined.

FIGURE 28. Prediction of the neural network when all variables are 
known.

FIGURE 29. Prediction of the neural network by knowing four 
variables and deducing the others from the linear relationships found 
with the multiple regression analysis.
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erating incomprehensible and hard-to-understand 
models. They cannot easily support the generation of 
scientifi c theories unless these relationships can be 
explained in a comprehensible form to aid in the pro-
cess of prediction. Generally, these models are diffi -
cult to understand because the processing in a neural 
network occurs at the sub-symbolic level as numerical 
estimation and manipulation of network parameters. 
Therefore, it is not always possible to directly trans-
late these large sets of real valued parameters into 
symbols or concepts that have semantic signifi cance. 
Thus, the inability to provide an end-user with the 
capability to explain the ANN have generally been rec-
ognized as the most signifi cant obstacles to the more 
widespread application of ANN.

The goal of a knowledge extraction algorithm is to 
translate this neural network model into an explicit 
symbolic form. Knowledge extraction can enhance 
the capabilities of an ANN by developing rules based 
on the assigned weights. The knowledge embedded 
within the trained ANN in the form of weights needs 
to be extracted and expressed as a set of rules. Basi-
cally, knowledge is acquired during the training phase 
and is then encoded within the network architecture, 
the activation function associated with each layer, 
and the set of numerical weights. Knowledge extrac-
tion is based on the behavior of the neurons within 
the ANN. A signifi cant amount of research has been 
expended in recent years to develop techniques for 
the extraction of knowledge from trained ANN. Key 
methods include the M-of-N algorithm, validity inter-
val analysis (VIA), genetic algorithm approach, the 
TREPAN algorithm to Fuzzy ARTMAP system, and 
other approaches.41-46

For future research, the plan is to use a few 
techniques such as TREPAN and C4.5 (Decision Tree 
algorithms) where the resulting decision tree ap-
proximates the network. This approach would add 
to and refi ne the role of crude oil in CO2 corrosion by 
approaching the problem from a knowledge-based 
perspective. Corrosion inhibition, as noted earlier in 
this paper, is a function of several factors related to 
the protectiveness of crude oils. Incorporating this 
extracted knowledge into a model will have many 
advantages in improving the accuracy and ability in 
predicting CO2 corrosion behavior. These decision tree 
algorithms could aid in further understanding the 
relationships between the input variables and inhibi-
tion with crude oils. By extracting knowledge into a 
comprehensible form, further relationships between 
input and output variables can be explored and can 
be used to support the generation rule-based systems. 
These extracted comprehensible rules aid in develop-
ing a more usable prediction tool and enhance the un-
derstanding of the CO2 corrosion process. Extracting 
knowledge from a neural network-based model and 
then converting it into a comprehensible form is what 
makes this future research so useful. This knowledge 

will be used to further develop a hybrid (theoretically 
and empirically based) model for better prediction of 
CO2 corrosion rates.
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ASTM International Symposium on Advances in Electrochemical 
Techniques for Corrosion Monitoring and Measurement 

Issues a Call for Papers

Papers are invited for a Symposium 
on Advances in Electrochemical 
Techniques for Corrosion Monitoring 
and Measurement, sponsored by 
ASTM Committee G01 on Corrosion 
of Metals and its Subcommittee 
G01.11 on Electrochemical Tech-
niques for Corrosion Monitoring. The 
symposium will be held May 22-23, 
2007, in Norfolk, VA, in conjunction 
with the May 23-24, 2007, standards 
development meetings of Committee 
G01.

This symposium will cover the 
use of electrochemical techniques for 
corrosion as applied to monitoring, 
measurements, new test methods, 
and life prediction/modeling. The 
objective of this symposium is to 
provide a forum for discussing the 
latest advances in electrochemical 
techniques as they relate to the cor-
rosion of metals.

To participate in the symposium, 
presenters/authors must submit the 
online Abstract Submittal Form, http://
www.astm.org/MEETINGS/COMMIT/
G01symp.html, and attach a 250-300 
word preliminary abstract by August 
4, 2006. The abstract must include a 

clear defi nition of the objective and 
approach of the work discussed, 
pointing out material that is new, and 
present suffi cient details regarding 
results. The presentation and manu-
script must not be of a commercial 
nature nor can it have been previ-
ously published. Because a limited 
number of abstracts will be accepted, 
be sure that the abstract is complete 
to allow for careful assessment of 
the paper’s suitability for this sympo-
sium. The symposium chairman, 
Sankara Papavinasam, will notify 
you in writing by October 4, 2006, of 
your paper’s acceptability for presen-
tation at the symposium. If the pre-
liminary abstract is accepted, the 
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